$\int_-1^1x^4arctgx=x^5/5arctgx-\intx^5/5(1/(1+x^2))dx$ - Studentville

$\int_-1^1x^4arctgx=x^5/5arctgx-\intx^5/5(1/(1+x^2))dx$

esercizio svolto o teoria

A cura di: Gianluca

$int_-1^1x^4arctgx=x^5/5arctgx-intx^5/5(1/(1+x^2))dx$

=$x^5/5arttgx-1/5intx^5/(1+x^2)dx$

=$x^5/5arctgx-1/5intx^3-xdx-1/5intx/(x^2+1)dx$

=$x^5/5arctgx-1/5(x^4/4)+1/5(x^2/2)-1/5intxdx-1/5int1/(x^2+1)dx$

=$1/5x^5arctgx-1/20x^4+1/10x^2-1/5arctgx$

=$(1/5x^5-1/5)arctgx-1/20x^4+C$

di Anoè Gianluca – www.chenesoio.com  

  • Integrali
  • Matematica - Integrali

Ti potrebbe interessare

Link copiato negli appunti