A cura di: Stefano Sannella
{etRating 2}
Nella prima fila di un’aula devono sedersi 6 studenti: tre ragazze e tre ragazzi.
In quanti modi si possono sedere se due studenti dello stesso sesso non devono stare vicini ?
Notiamo innanzitutto una cosa: il ragionamento è simmetrico (uomini e donne).
Supponiamo dunque che il primo della fila sia un ragazzo, facciamo i nostri conti e alla fine moltiplichiamo tutto per 2 (per racchiudere l’eventualità che all’inizio della fila ci può anche essere una ragazza).
Dunque i ragazzi devono sedersi in modo di alternare il sesso, quindi M-F-M-F-M-F
oppure, caso simmetrico, F-M-F-M-F-M
Per il primo posto si hanno 3 scelte (i tre ragazzi).
Per il secondo posto abbiamo ugualmente 3 scelte (le tre ragazze)
Per il terzo posto abbiamo ora 2 scelte (i due ragazzi rimanenti)
per il quarto posto 2 scelte (le due ragazza rimanenti)
per il quinto posto si ha solo 1 scelta (il ragazzo rimasto)
per il sesto posto 1 scelta (l’ultima ragazza)
In tutto abbiamo quindi, moltiplicando tra loro i casi e infine per 2,
$2 cdot (3 cdot 3 cdot 2 cdot 2 cdot 1 cdot 1) = 72$.
FINE
- Matematica