Un'urna contiene $n_1$ palle bianche e $n_2$ palle nere, mentre una seconda urna ne contiene $m_1$.. - Studentville

Un'urna contiene $n_1$ palle bianche e $n_2$ palle nere, mentre una seconda urna ne contiene $m_1$..

esercizio svolto o teoria

A cura di: Stefano Sannella

{etRating 3} 

Un’urna contiene $n_1$ palle bianche e $n_2$ palle nere, mentre una seconda urna ne contiene $m_1$ bianche e $m_2$ nere.
Si sceglie a caso una palla da ciascuna urna e successivamente se ne sceglie a caso una tra le due. Qual è la probabilità che la palla scelta sia bianca?


Esaminiamo la prima estrazione.
Ci sarà probabilità $n_1/(n_1+n_2)$ di estrarre una pallina bianca dalla prima urna.
Questo perché $n_1$ sono i casi favorevoli, mentre i casi possibili sono dati dal numero totale delle palle contenute nell’urna in questione, ovvero banalmente $n_1+n_2$.

Seguendo il medesimo ragionamento, possiamo facilmente affermare che la probabilità di estrarre una pallina bianca dalla seconda urna è
$m_1/(m_1+m_2)$

Ora occorre scegliere una delle due palle estratte.
La probabilità di prendere la pallina estratta dalla prima urna o quella della seconda è $1/2$, ovviamente, visto che non vi è alcuna differenza.

Pertanto, la palla bianca della prima estrazione ha probabilità $n_1/(n_1+n_2)$ di essere estratta, e $1/2$ di essere scelta poi.
Quindi sarà la palla finale con probabilità
$1/2*n_1/(n_1+n_2)$
Stesso discorso per l’altra palla.

In conclusione, possiamo dire che la probabilità cercata è
$1/2n_1/(n_1+n_2)+1/2m_1/(m_1+m_2)$

FINE

  • Matematica
  • Matematica - Probabilità e Statistica

Ti potrebbe interessare

Link copiato negli appunti